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Abstract

Existing research efforts in key management can only handle very limited number of nodes and are vulnerable to

active attacks. In addition, the flexibility and adaptivity of handling dynamic risks in different parts of networks,

although critical in the practical usages of ad hoc networks, have been largely ignored. In this paper, we propose a novel

hierarchical scheme based on threshold cryptography to address both security and efficiency issues of key management

and certification service in Mobile Ad hoc Network (MANET). The main contributions of our key management scheme

include: 1. providing various parts of MANET the flexibility of selecting appropriate security configurations, according

to the risks faced; 2. providing the adaptivity to cope with rapidly-changing environments; 3. handling of MANETs

with a large number of nodes; 4. issuing certificates with different levels of assurance. We also propose two algorithms,

which can be used independently from the hierarchical structure, to protect certification services in ad hoc networks

from active attacks. Our simulation results show that, compared to the previous work [16,18,19], our second algorithm

is much faster in a friendly environment. When the key length is 1024 bits, the process of generating or renewing a

certificate in our second algorithm is around six to eight times faster, and the process of generating partial certifi-

cates in our second algorithm is around 20–80 times faster. The latter advantage is critical in MANET where intrinsi-

cally the less help a node requests from its neighbors, the higher is the chance of obtaining the help. Furthermore,
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simulation results also show that our two algorithms work well in a hostile environment in which existing schemes work

poorly.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Among all the security issues in Mobile Ad hoc

Network (MANET), key management is the most

crucial one, because it is the essential assumption

of many other security services. For instance,

many secure routing protocols, such as ARAN

[26] and SRP [22], assume that a pair of private
and public keys and a certificate signed by a

Trusted Third Party (TTP) have been assigned to

nodes. Current research work in key management

[33,16,18,19,17,14,30] can only handle limited

number of nodes. When the number of nodes in-

creases, most of them become either inefficient or

insecure. In addition, since there is no clear line

of defense in MANET, we cannot classify nodes
in advance according to risks that they face.

Even worse, in some cases, e.g. soldiers in the

battle field, not only different parts of networks

face different degrees of risks, but also such risks

may change rapidly due to the dynamic prop-

erty of MANET. Therefore, flexibility and adap-

tivity are two crucial properties that should be

considered when we design a key management
scheme for MANET. Besides that, a major differ-

ence between MANET and wired network is that,

in the former, nodes normally have very limited

power supplies. Therefore, any protocol that re-

quires high computation cannot be of practical

use.

There are two types of possible attacks on cer-

tification services in MANET: passive attacks
and active attacks. In passive attacks, adversaries

simply drop and refuse to forward other nodes� re-
quests of assigning or renewing certificates. In ac-

tive attacks, in contrast, adversaries may return a

fake reply (e.g. an invalid partial certificate) to

the node requesting certification service. Most of

current approaches for certification services

[16,18,19,17,14] mainly focused on passive attacks,
and are inefficient in cases that malicious nodes

launch active attacks. Unfortunately, active at-

tacks may result in great risks, especially in the

military field. Due to the poor physical security

in MANET, adversaries may take over some

nodes in the network. By launching active attacks,

adversaries can disable the certification services of

the whole network without being caught, with only
a very small portion of nodes.

In this paper, we propose a novel hierarchical

security scheme, called Autonomous Key Manage-

ment (AKM), which can achieve flexibility and

adaptivity, and handles MANET with a large

number of nodes. AKM also enables the ability

to issue certificates with different levels of assur-

ance with help from a relatively small number of
nodes. In addition, we propose two algorithms,

which are based on threshold cryptography and

Verifiable Secret Sharing (VSS) and are indepen-

dent from AKM, to resist active attacks towards

certification services. Simulation results show that

our second algorithm is much more efficient than

previous works [14,16–19].

The rest of the paper is organized as follows.
Section 2 studies the related work in the literature.

In Section 3, we give an overview of our ap-

proaches for securing key management and certi-

fication services in MANET. After introducing

some cryptographical primitives in Section 4, in

Section 5 and Section 6, we present the general de-

sign of AKM and show how scalable secret share

updates are achieved in AKM to satisfy the dy-
namic environment like MANET. Following that,

in Section 7, we propose two algorithms that can

protect certification services from active attacks,

and show the method of issuing certificates with

different levels of assurance. Simulation results

on the security and efficiency of our scheme and

algorithms are given in Section 8. In Section 9,

we draw the conclusions.
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2. Related work

In [33], Zhou and Haas focused on how to estab-

lish a secure key management service in an ad hoc

networking environment. They proposed to use
threshold cryptography [3,2] to distribute trust

among a set of servers. The focus of their work is

to maximize the security of the shared secret in the

presence of possible compromises of the secret share

holders. It assumes a small group of serverswith rich

connectivity. Therefore, it is not suitable for purely

ad hoc environments. Furthermore, the authors

proposed to employ proactive schemes [13,12,11,
9,8] to achieve share refreshing and to adapt to

changes in the network in a scalable way. However,

their solution is only suitable for a small group of

servers and is inefficient for large ad hoc networks.

In [16,18,19], Kong et al. also took advantage of

threshold secret sharing to distribute the functions

of the Certificate Authority (CA) to normal nodes.

In other words, each node holds a secret share, and
multiple nodes in a local neighborhood jointly pro-

vide complete services. It minimizes the effort and

complexity for mobile clients to locate and contact

the service providers. One of the two major weak-

nesses of this scheme is that it is difficult to set an

appropriate threshold k, which is a globally fixed

parameter that is honored by each entity in the

system. This scheme assumes that each node has
at least k one-hop legitimate neighboring nodes.

If k is set to a large number, many nodes may have

problems in localizing certification service. On the

other hand, if k is too small, the probability of glo-

bal secret key being compromised is quite high.

Another serious problem is that, due to the inabil-

ity of distinguishing adversaries who provide inva-

lid partial certificates from honest nodes, both of
their algorithms for certification renewals are vul-

nerable to active attacks, such as sending invalid

partial certificates which result in the failure of

renewing or assigning a certificate. In [17], Lehane

et al. presented a similar scheme based on shared

RSA key generation, and thus the scheme shares

the pros and cons of Kong�s scheme. In addition,

according to their empirical results, the efficiency
of their protocol is not good.

One recent work by Narasimha et al. [21]

pointed out that Kong�s algorithm [16,18,19] is
vulnerable to active attacks, and proposed a

Threshold DSA signature scheme. However, their

scheme is based on an early protocol proposed

by Feldman [5], which has been shown to have a

security flaw. A secure protocol has been proposed
in [10], which we will use for our algorithms. In

addition, their scheme is in fact similar to our first

algorithm, in the sense that both of them are stan-

dard VSS processes based on Discrete Logarithm

Problem (DLP), and thus are more costly, com-

pared to our second algorithm.

In [14], the authors tried to combine the ideas of

ID-based and threshold cryptography. Their
scheme avoids the need for users to generate their

own public keys and distribute these keys through-

out the network, since the user�s identity acts as

her public key. Besides that, users only need to

propagate their identities instead of the certificates.

This can lead to huge savings in bandwidth. How-

ever, the usage of ID-based cryptography instead

of certificates also results in a few weaknesses.
One major weakness is that the same ID, i.e. the

public key in their scheme, can never be reused

by a different user at a later time, because ID itself

cannot present the variance of time. As a result, to

avoid two nodes holding the same ID, users have

to remember all the IDs that have ever appeared

in the system. It is infeasible as the increase of

the storage for IDs is proportional to the time span
since the network is setup, given that users join

and leave the network randomly. In addition, even

if collisions can be avoided by letting users existing

in the network select and assign an ID to the newly

joined user, this ID is meaningless, since it does

not provide useful information about the identity

of the user. Finally, the secret and public key pair

of a user in this scheme, in fact, is not a real Public
Key Infrastructure (PKI) key pair. Consequently,

users can only ensure the authentication by signing

messages using their secret keys but cannot ensure

the confidentiality by encrypting messages using

their public keys, namely their identities.

In [31], Yi and Kravets proposed a scheme

named Mobile Certificate Authority (MOCA).

Compared to [16,18,19], this scheme limits the can-
didates who hold a share of the secret key of the

network to a subset of users instead of all the

users. However, it leads to problems, such as
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who and how to judge the level of security and

choose MOCAs, how to ensure that MOCAs are

distributed uniformly, etc. Besides that, they as-

sumed that there exist some nodes which are more

trustworthy, computationally more powerful, and
physically more secure. Therefore, the scheme is

inappropriate for purely ad hoc networks. They

also proposed a new pattern of communication,

termed as ‘‘Manycast’’, between a client and

MOCAs. The pattern is based on a strong assump-

tion that the client knows which nodes are

MOCAs and their positions. Furthermore, the

authors ignored potential passive and active at-
tacks from malicious users, which may weaken

the benefit of employingMOCAs to save the packet

overhead.

Both [33] and [16,18,19] require a Trusted

Authority (TA), though the latter needs the

authority only at the start-up phase. In [30], a

more extreme case, where there is no central

authority at all, was considered. It is a fully self-
organizing public-key management system, in

which each user is her own authority domain

and issues public-key certificates to other users.

When user u wants to verify user v, they merge

their local certificate repositories and find an

appropriate certificate chain from u to v in the

merged repository. This method has a few weak-

nesses. First, the initialization phase (i.e. boot-
strapping the local certificate repository) is

relatively expensive. In addition, to achieve better

assurance about the user-key binding, authentica-

tion metrics are used. However, how to find the

most appropriate metric for MANET remains an

open issue. Even if such a metric exists, the dy-

namic property 1 of MANET results in very high

computation costs in reconstructing local certifi-
cate repositories of all the nodes. Furthermore,

this scheme is also vulnerable to active attacks.

The metric�s confidence in someone�s honesty can

be easily cheated, as any user can create an arbi-

trary number of public keys and issue many false

certificates.
1 The dynamic property here does not mean the join/drop

operations of nodes but revocations of certificates due to

compromises or other reasons.
3. Overview of our approaches

To overcome the challenges described in Sec-

tion 1, we provide approaches from both the archi-

tecture level and the algorithm level.
At the architecture level, we propose AKM

which is based on the hierarchical structure and se-

cret sharing to distribute cryptographic keys and

provide certification services. In order to be em-

ployed in MANET, AKM is designed with several

characteristics which are different from previous

hierarchical key management schemes [20,15].

First, the hierarchical structure of AKM is a logi-
cal tree, in which all the leaf nodes represent real

wireless devices, while all the branch nodes only

exist logically. In other words, AKM does not re-

quire the existence of real branch nodes (i.e.

trusted key servers in [20,15]), and thus is suitable

for purely ad hoc environments. Second, flexibility

and adaptivity can be obtained in AKM, since not

only the structure of key management may change
according to the increase/decrease of nodes, but

also different parts of the structure have the free-

dom to set appropriate configurations to cope with

various levels of risks. In addition, simulation re-

sults show that computation costs due to the

variations are very small under common threshold

and region size settings. Third, in AKM, secret

keys of all branch nodes originate from one
global secret key either directly or indirectly. The

secret key of each branch node is shared by its

sub-nodes (either branch nodes or leaf nodes)

using the Shamir secret sharing scheme [28]. Such

secret sharing process is performed recursively

from top down to the lowest level. This character-

istic allows us to issue certificates with different

levels of assurance.
Once AKM is in operation, each real node

holds a secret share which is used cooperatively

with other nodes to maintain distributed key man-

agement services, such as assigning a secret share

or a certificate to a newly-joined node.

At the algorithm level, we propose two algo-

rithms, which are based on threshold cryptogra-

phy and VSS and are independent from AKM.
Both algorithms can resist active attacks. Given

that there is no communication error, our first

algorithm can assign a certificate within one round
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with help from a group of 2k � 1 nodes, in spite of

active attacks. In contrast, the second algorithm

need help from only k nodes, although it may need

more than one round to assign a certificate. Here,

one round is defined to be the whole procedure
that begins from a node requesting to be assigned

a new certificate or renew its certificate to the com-

bination and validation process of the certificate

assigned or renewed. Simulation results show that,

compared to the previous work [16,18,19,17,14],

our second algorithm is not only much faster in

a friendly environment, but it also works well in

a hostile environment in which existing schemes
work poorly. Furthermore, the process of generat-

ing partial certificates in our second algorithm

is extremely fast. Such advantage is critical in

MANET where intrinsically the less help a node

requests from its neighbors, the higher is the

chance of obtaining the help. Consequently, using

our second algorithm, a node can easily find en-

ough neighboring nodes that provide the certifica-
tion service.
4. Cryptographic primitives

In this section, we briefly describe various cryp-

tographic techniques underlying our approaches.
4.1. Secret sharing

The first secret sharing scheme was proposed by

Shamir in 1979 [28]. This scheme is also called a

(n,k)-threshold scheme, since it has the following

properties: (1) any k or more users can reconstruct

the secret from their shares; (2) for k � 1 or fewer

users, it is impossible to reconstruct the secret. The
integer k is called the threshold. The details of the

scheme are shown as follows.

Let p > n be a large prime, let c1, . . . ,cn 2 Zp be

the user identifiers, let k be the threshold, and let

S 2 Zp be the secret, where Zp is the set of residues

modulo p (i.e. Zp = 0,1, . . . ,p � 1). A TA chooses

random elements a1, . . . ,ak�1 2 Zp and sets up

the polynomial

f ðxÞ ¼ ak�1xk�1 þ � � � þ a1xþ S 2 Zp½x�
of degree at most k � 1. The shares are obtained

by

Si ¼ f ðciÞ ðmodpÞ for 1 6 i 6 n

and then distributed to the users.

Using the Shamir secret sharing scheme, it is

easy to add new users without changing the shares

of the existing users. The TA just chooses a non-

zero identifier cn+1 2 Zp that has not been used

before and assigns the share Sn+1 = f(cn+1)(modp).

This does not affect the existing shares. On the

other hand, the Shamir secret sharing scheme can
be used only once. As soon as the members of a

privileged coalition have disclosed their shares to

recover the secret, these shares are compromised.
4.2. Proactive security

Distribution of the key makes it harder for an

adversary to expose the secret key, but does not re-
move this risk. Common mode failures, flaws that

may be present in the implementation of the proto-

col or the operating system being run on all serv-

ers, imply that breaking into several machines

may not be much harder than breaking into one.

Thus, it is realistic to assume that even a distrib-

uted secret key can be exposed. Proactive schemes

[5,7,12,9,32] address this to some extent, requiring
all of the break-ins to occur within a limited time

frame.

A proactive threshold cryptography scheme

uses share refreshing, which enables users to com-

pute new shares from old ones in collaboration

without disclosing the service private key, i.e. the

shared secret, to any user. The new shares consti-

tute a new (n,k) sharing of the service private
key. After refreshing, users remove the old shares

and only keep the new ones. Because the new

shares are independent of the old ones, the adver-

sary cannot combine old shares with new shares to

recover the private key of the service. Thus, the

adversary is challenged to compromise k users be-

tween periodic refreshings. Share refreshing relies

on the following homomorphic property. If (s1,
s2, . . . , sn) is a (n,k) sharing of S and (s01; s

0
2; . . . ; s

0
n)

is a (n,k) sharing of S 0, then (s1 þ s01; s2 þ s02; . . . ;
sn þ s0n) is a (n,k) sharing of S + S 0. If S 0 is 0, then

we get a new (n,k) sharing of S.
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4.3. Verifiable secret sharing schemes

There are two weaknesses in the Shamir secret

sharing scheme.

Honesty of the dealer. If the dealer distributes erro-

neous subshares to some or all the users, how can

users verify whether the subshares received are

correct?

Honesty of users. During the share recovery

process, if some compromised users provide

false subshares, how can other users detect

them?

Share refreshing must tolerate missing sub-

shares and erroneous subshares from compro-

mised users. A compromised user may not

send any subshares. However, as long as correct

users agree on the set of subshares to use, they

can generate new shares using only subshares gen-

erated from k users in a (n,k) secret sharing
scheme. To detect incorrect subshares, a few VSS

schemes were proposed in [5,24]. A VSS scheme

generates extra public information for each (sub)-

share using a one-way function. The public

information can testify the correctness of the

corresponding (sub)shares without disclosing

them.
5. Autonomous key management for large

Ad Hoc networks

To be more intuitive, in this section, we first

give an example to show the method of construct-

ing the hierarchical structure in AKM, instead of

presenting the details of the scheme, such as nota-
tion and definitions, directly.
2 In some cases, if all the initial users think that the number

of adversaries among them is less than a value k at that time,

the threshold of the initial secret sharing system could be set to

k, which is less than the number of initial users.
5.1. An example of constructing the hierarchical

structure in AKM

Suppose that, at the beginning, there are two

users that are physically nearby and can commu-

nicate directly with each other. However, they
do not trust each other. Therefore, they decide

to generate a (2,2) secret sharing system
cooperatively. 2 A distributed VSS scheme (e.g.

the one proposed in [10]) is employed, since it is

not suitable to assume the existence of a TTP in

purely ad hoc networks. The structure of AKM

at the initial stage is shown as Fig. 1, where the
square and circle signs represent real nodes (i.e.

users) and logical nodes, respectively. Each user

holds a share Bi (i = 1,2) of the secret A, where i

is the identity of the user in the group, but none

of them can deduce A by itself. The secret can only

be recovered under the cooperation of at least two

users.

Afterwards, when a new user wants to join this
group, she requires help from at least two mem-

bers currently in the group. Once the new user is

accepted, she is assigned with a new share of A

corresponding to her identity (e.g. 3 in the exam-

ple) in the group. And the configuration of the se-

cret sharing system is changed from (2,2) to (3,2),

as shown in Fig. 1. This ‘‘Join’’ operation is to be

explained in details in Section 6.2.1.
Although the shares holding by the current

members are refreshed periodically to protect the

shared secret, the system becomes more and more

insecure, when more and more users join the

group. Suppose that, in our example, members in

the group think that the system is insecure when

the ratio of the threshold of the secret sharing sys-

tem to the number of users in the group is less than
0.4. Thus, when the number of users reach six (as

shown in Fig. 1), members in the group have to di-

vide themselves into a few groups, such as two

groups in the example. More specifically, B1, B2

and B3 form a new group, members of which share

a newly-generated secret B7. Similarly, B4, B5 and

B6 form another group and share the secret B8.

The resulting structure of AKM after the division
is shown in Fig. 1. This operation increases the

height of the tree structure, and is called ‘‘Expan-

sion’’ operation, which is to be explained in details

in Section 6.2.5. In AKM, B7 and B8 are generated

in such a way that both of them are shares of the

initial secret A. However, the secret sharing config-
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urations within two newly-formed groups are inde-

pendent from each other, and are determined by

users that are initial members in the newly-created
group. In this example, C1, C2 and C3 (i.e. B1, B2

and B3) totally distrust each other and employ a

(3,3) secret sharing scheme within group Ci. In

contrast, D1, D2 and D3 (i.e. B4, B5 and B6) think

that there are less than two adversaries among

them between consecutive secret share updates.

Thus, they choose a (3,2) secret sharing scheme.

Note that, as shown in Fig. 1, the branch nodes
holding B7 and B8 are logical nodes, and thus do

not exist in reality. And secrets B7 and B8 are nei-

ther stored on any real node nor recovered explic-

itly at a later time.

Similarly, when more and more users want to

join group Ci (i = 1,2,3) or group Di (i = 1,2,3),

they need help from at least k users in that group,

where k is the threshold of the secret sharing con-
figuration of that group (i.e. k = 3 for group Ci,

and k = 2 for group Di).

5.2. Notation and definitions

Here we explain the definitions of some concepts

used in this paper, using a four-level MANET

system (shown in Fig. 2) as the example:
• Real nodes. The leaf nodes in the hierarchical

structure of AKM. They have their own per-

sonal PKI key pairs, and they are correspond-
ing to real devices in MANET. In Fig. 2, node

A to R are real nodes.

• Virtual nodes. The branch nodes in the hierar-

chical structure of AKM. They are virtual and

thus do not represent real devices in MANET.

In Fig. 2, the root node and node S to Z are vir-

tual nodes.

• Master node. The branch node that a node orig-
inates directly from. For example, node Z is the

master node of node V to X.

• Region. Consists of all the real and virtual nodes

originating directly from the same virtual node.

Each virtual node corresponds to a region. For

example, region T consists of real node D to F,

and region Z consists of virtual node V to X.

• Overall region size (ORS). The number of nodes
which possess secret shares originated from the

same secret, i.e. the secret key of the same

region, between two consecutive secret share

updates of this region. For example, we assume

that Fig. 2 shows the structure of the network

just after a secret share update. At this time,

the ORS of region S is 3. If node B leaves region

S, the ORS of region S is still 3 until the next
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secret share update, even though in fact the

number of the nodes currently in region S is 2.

We propose this new parameter, in view of the

fact that the leaving node may still keep a secret

share of the secret key of the region.

• Regional trust coefficient (RTC). The parameter

to indicate how secure a region is. It is defined
as the ratio of the threshold of a region to its

ORS.

• Global trust coefficient (GTC). The global lower

limit on RTC.

• Identifier (ID). The entity to represent a node.

• Global secret key (GSK). The secret key of the

whole MANET system.

• Global public key (GPK). The public key of the
whole MANET system.

We use the notations shown in Table 1.

5.3. Assumptions

We make the following assumptions in this

paper:
Table 1

Notations in AKM

PKi The public key of a region ‘‘i’’

SKi The secret share held by node ‘‘i’’.

If node ‘‘i’’ is virtual, the secret share

is also its secret key

IDi The identifier of a node ‘‘i’’

pki The public key of a real node ‘‘i’’

ski The secret key of a real node ‘‘i’’

SKi(M) A message M is signed by SKi
1. Each real node i has a personal PKI key pair

[pki, ski]. The key pair can be generated by either

a TTP or even the node itself.

2. Each real node joins and leaves the network

randomly.

3. Given the public key of any virtual node,

including the root node, it is computationally
infeasible to obtain the corresponding secret

key.

4. Between any two consecutive secret share

updates, the number of adversaries that hold

secret shares originated from the same secret

key (i.e. the secret key of the same region) is less

than k. The adversaries may still stay in the

region, or have already left it.
5.4. Design of AKM

In AKM, we assume that each real node joins

and leaves the network randomly. Therefore, due

to the hierarchical nature of AKM, for a virtual
node, the higher level it belongs to, the lower is

the probability of occurrences of region-based

operations (e.g. ‘‘Merge’’ and ‘‘Partition’’) involv-

ing this virtual node. In other words, the higher

levels of the hierarchical structure remain rela-

tively static, in spite of the fact that in MANET

the lowest level of AKM (i.e. those real nodes) is

highly dynamic. Together with this property, we
can set appropriate RTCs so that the region-based

operations are limited in lower levels.

AKM is self-organizing, since it does not rely

on any TTP or TA at any stage. During the initial-
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ization, as shown in the example in Section 5.1, in

contrast to [16,18,19] in which a TA is required to

bootstrap the initial nodes, in AKM the role of the

TA has been replaced by those initial nodes them-

selves, which jointly generate GSK using a distrib-
uted VSS scheme [10]. In addition, when the

environment changes, e.g. some nodes join or

leave, those nodes currently in a group/region

would cooperate and adjust accordingly by them-

selves. In other words, our solution is adaptive to

dynamic environments without a TTP. Details

about node-based and region-based operations

are shown in Section 6.2.
In AKM, all the regions� secret keys originate

from GSK either directly or indirectly. The secret

sharing process based on [28] is performed recur-

sively from top down to the lowest level. Each

node in AKM except the root virtual node, either

real or virtual, holds a share of the secret of its

master node and a PKI key pair. For a virtual

node, the secret share that it holds is also its secret
key, and its public key is generated from the secret

key. In this scheme, we employ an asymmetric

cryptographic scheme based on DLP to generate

the region�s public key. For example, given that

the secret key of region i is SKi, its public key

can be computed by PKi ¼ gSKiðmodpÞ. Unlike vir-

tual nodes, each real node generates its own PKI

key pair through some other method, e.g. by a
TTP or even itself. However, it also needs to store

a share of the secret key of its region (i.e. the secret

key of its master node). For the sake of clarity, we

list how real nodes and virtual nodes generate their

keys in Table 2. Note that, to ensure the security of

AKM, the secret key of any virtual node should

never be recovered explicitly, even when we need

it to assign a certificate. Instead, partial certificates
are generated individually with those shares of

the secret key, and then they are combined to cre-

ate the certificate. Details of assigning or renewing
Table 2

Key pairs and secret shares of nodes

Real node V

Secret share Obtained during the secret sharing process O

Secret key Obtained before the initialization of AKM T

Public key Obtained before the initialization of AKM G
certificates are presented in Section 7 at a later

time.

Besides the public key of itself, a real node

needs to store public keys of other nodes in the

hierarchical structure, since in purely ad hoc envi-
ronments like MANET we cannot assume the exis-

tence of a trusted public server or directory storing

public keys of other members. For a real node with

sufficient storages, it will store two kinds of public

keys: (1) public keys of itself and virtual nodes that

are on its reverse path to the root. We denote the

group of all these nodes as V; (2) public keys of

nodes that are within the same region of any mem-
ber in group V. For instance, in Fig, 2, node A

needs to store (1) PKA, PKS, PKY and GPK; (2)

PKB and PKC (B and C are in the same region

of A), PKT and PKU (T and U are in the same re-

gion of S), PKZ (Z is in the same region of Y).

Public keys of those higher-level virtual nodes

are useful, when we want to verify certificates with

different levels of assurance. The generation of cer-
tificates with different levels of assurance is to be

presented in Section 7.1.3. However, there is a

trade-off between the storage and this new charac-

teristic provided by AKM. In reality, if a real node

has limited storages, it can store a subset of these

public keys. More specifically, it can discard public

keys of those nodes that are d levels higher than it.

For instance, in the previous example, when d = 2,
public keys stored on node A consist of (1) PKA,

PKS; (2) PKB and PKC (B and C are in the same

region of A), PKT and PKU (T and U are in the

same region of S). The minimum set of public keys

that must be stored on a real node consists of (1)

public keys of all the real nodes in the same region

as itself; (2) the public key of its master node.

These public keys are required to assign or renew
common certificates (in contrast to certificates with

different levels of assurance), which are signed by

the secret key of the real node�s master node, as
irtual node

btained during the secret sharing process

he secret share is used as its secret key

enerated from its secret key after receiving its secret share



666 B. Zhu et al. / Computer Networks 48 (2005) 657–682
presented in Section 7. Thus, A should at least

store (1) PKA, PKB and PKC (A,B,C are within

the same region); (2) PKS (S is the master node

of A). For simplicity, we assume that in Fig. 2

the number of nodes in each region is n, and the
secret sharing process within each region uses the

same (n,k) configuration. Given that the height

of the hierarchical structure is denoted as l, in such

a system, there are nl�1 real nodes, and each of

them needs to store n + 1 (at minimum) to

(l � 1)n + 1 (at maximum) public keys instead of

storing public keys of all the nl�1 nodes.

It should be absolutely clear that the proposed
AKM scheme does not requires a preset hierarchi-

cal structure for all the nodes. If it did, this require-

ment would be really inappropriate for ad hoc

networks where nodes are highly dynamic and thus

we cannot determine their positions in advance.

Instead, AKM only requires a small number of

nodes, which are physically nearby and can com-

municate directly with each other, during the ini-
tialization. More importantly, the structure of the

whole network may vary when more nodes join

or leave. Therefore, the hierarchical structure of

the whole network is adaptive. In the above exam-

ple, the number of initial nodes needed is only k,

and the size of this network can be expanded to

nl at maximum at a later time. Actually, if there is

no limit on the height of the hierarchical structure
in AKM, AKM can contain nodes of arbitrary size.

Besides adaptivity, another main advantage of

AKM is the flexibility of its structure. Each re-

gion 3 can determine its own size and the threshold

of secret sharing, as long as it obeys the following

rule: its RTC should be no less than GTC. The

flexibility of the threshold parameter is very desir-

able, since in some cases different regions of the
MANET may face risks of different intensities.

Thus, the threshold should not be set to be glob-

ally uniform. Moreover, such property is very use-

ful in balancing the security and efficiency

requirements.
3 In fact, as shown in the example in Section 5.1, it is not the

virtual node representing the region but all the real nodes in this

region that determine the secret sharing configuration during

the initialization of the region, because the virtual node is

logical and thus cannot take any operation by itself.
6. Scalable share updates

In AKM, in order to improve the robustness of

share updates, we distribute the functionality of

the dealer in the Shamir secret sharing scheme
[28] to many real nodes. The share updating pro-

cess occurs under two conditions. One is the regu-

lar periodic renewal of secure shares. The other

condition happens during the node-based and

region-based operations.

To ensure the security of share updates, we em-

ploy proactive secret sharing schemes [5,7,12,9] to

adapt the configuration of secret sharing to varia-
tions in a highly dynamic environment, such as

MANET. However, if a proactive scheme requires

a large amount of computation, nodes in

MANETs cannot handle such requirement be-

cause of their limited computation power. In order

to reduce the cost to a tolerable level, we keep the

threshold of a region unchanged in the lifetime of

this region. It can greatly improve the efficiency of
the proactive scheme, since the cost of changing

the configuration of a secret sharing scheme from

(n,k) to (n 0,k 0) is very high.

6.1. Regular periodic renewal of secret shares

In AKM, a proactive threshold cryptography

scheme is used to enable nodes of a region to com-
pute new shares from old ones in collaboration

without disclosing the secret key of the region. It

relies on the homomorphic property.

We notice that it is unnecessary to require all

the nodes involved in the share refreshing process.

Instead, the task can be done by only k nodes,

since we assume that, between any consecutive se-

cret share updates, the number of adversaries who
hold secret shares originated from the same secret

key is less than k. To detect those incorrect sub-

shares, the VSS scheme [29] is employed.

Details are shown as follows. To renew the se-

cret shares of all the n nodes in a region, first, k

nodes are chosen from this region. Without lose

of generality, we denote them as (1, . . . ,k). Each
of the k nodes, denoted as node i, randomly gener-
ates a (n,k) sharing of 0, denoted as (SKi1,

SKi2, . . . ,SKin), and then distributes the corre-

sponding subshare SKij to node j 2 {1, . . . ,n}.
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After receiving all the subshares generated by the k

nodes, each node in the region, denoted as node j,

can compute a new share from them and its old

share (SK 0
j ¼ SKj þ

Pk
i¼1SKij). The new shares

constitute a new (n,k) sharing of the service secret
key. After refreshing, nodes remove the old shares

and use the new ones to generate partial signa-

tures. Because the new shares are independent of

the old ones, the adversary cannot combine old

shares with new shares to recover the secret key

of the service. Thus, the adversary is challenged

to compromise k nodes in the same region between

periodic refreshing.
6.2. Common node-based and region-based

operations

A comprehensive key management scheme

must handle adjustments to secret shares subse-

quent to all membership-changing operations in

the underlying communication system.

6.2.1. ‘‘Join’’ operation

‘‘Join’’ operations happen when one real node

wants to join a region. It is, in fact, the process

of changing a region�s configuration of the thresh-

old scheme from (n,k) to (n + 1,k). For example,

node i wants to join a region. First, it chooses a

group of k nodes in this region denoted as group
G = {1, . . . ,k}, and multi-casts its request to them.

Once node j receives the request, it checks node i�s
certificate and its CRL. If node j decides to serve

the request, it calculates a partial share for node

i as

SK 0
j ¼ SKjljðiÞ þ Dj ðmodqÞ;

where Dj is the shuffling factor of node j, and

ljðiÞ ¼
Qk

r¼1;r 6¼j
IDi�IDr
IDj�IDr

ðmodqÞ. The shuffling factor

is imported to prevent SKj from being disclosed,

because node i can easily recover SKj from SK 0
j if

there is no shuffling factor. One method to gener-

ate the shuffling factor requires that each pair of

nodes (j, r) in G exchanges a number Sjr, and then

Dj is computed as

Dj ¼
Xk

r¼1;r 6¼j

rðj� rÞ � Sjr;
where r(x) is the sign function. Namely,

rðxÞ ¼
1; x > 0;

�1; x < 0;

0; otherwise:

8><
>:

Then node j returns the partial share to node i.

After receiving k partial shares, node i can con-

struct its secret share SKi by adding them together

Xk

j¼1

SK 0
j ¼

Xk

j¼1

SKjljðIDiÞ þ
Xk

j¼1

Dj ¼ SKi ðmodqÞ

and verify its secret share by

gSKi ¼
Yk
j¼1

ðPKjÞljðIDiÞ ðmodpÞ:
6.2.2. ‘‘Leave’’ operation

It happens when one node wants to quit from a

region. Compared to ‘‘Join’’ operation, it is easier.

When nodes receive a ‘‘Leave’’ request from a

node in the same region or detect that a node

leaves, they simply remove the certificate of that

node from their key management records without

recomputing secret shares. However, ORS does

not decrease and thus RTC remains unchanged
when a node ‘‘leaves’’ the region, because the node

may still possess a secret share of the secret key of

this region.

6.2.3. ‘‘Merge’’ operation

‘‘Merge’’ operations happen when the number

of nodes within a region drops under its threshold.

As we know, the RTC of a region drops very
quickly, if ORS increases a lot while the threshold

remains unchanged. Therefore, we do not merge a

region directly into a nearby region with the least

size or the highest RTC. Instead, region i is divided

into a few parts and each part is combined into

one nearby region. Since the thresholds of the tar-

get regions are invariable, a ‘‘Merge’’ operation

can be viewed as a series of ‘‘Join’’ operations
(see Fig. 3).

6.2.4. ‘‘Partition’’ operation

‘‘Partition’’ operations happen when the RTC

of a region drops under GTC or is lower than



A

BjB1 Bm

Cj1 Cj(n+s)

after "Merge" 
(m-1 regions at Level 2)

A

BiB1 Bm

Ci1 Cin

before "Merge" 
(m regions at Level 2)

BjLevel 2

Level 1

Level 3 Cr1 Cr(n+s')

BrBr

Cj1 Cjn Cr1 Crn

s + s' = n

Fig. 3. ‘‘Merge’’ operation.
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the security level expected. In AKM, the threshold

of a region is fixed. Therefore, if the ORS of a re-
gion increases greatly, adversaries have a large

chance to compromise the threshold system. A

straight-forward approach is to partition the re-

gion into two regions with almost the same size.

In the hierarchical key tree, new regions lie at the

same level as the original one. For example, as

shown in Fig. 4, region Bi with size 2n and the

threshold k is partitioned into two regions Bi and
Bm+1, each of which has n nodes and keeps its

threshold as k. For the n nodes remaining in region

Bi, they just need to renew their secret shares as

discussed in Section 6.1.

In order to assign new secret shares to the n

nodes in region Bm+1, first, region Bm+1 chooses
A

BiB1 Bm

Ci1 Ci(2n)

before "Partition"
(m regions at Level 2)

Level 2

Level 3

Level 1

Fig. 4. ‘‘Partition
k regions at level 2, and then selects k nodes

from each of the k regions. Without lost of
generality, we denote the group of the k regions,

the group of the k nodes from region Bj

(j = 1, . . . ,k), and the group of all these k2

nodes as GB = {B1, . . . ,Bk}, Gj = {Cj1, . . . ,Cjk},

and G = {C11, . . .,C1k, . . . ,Ck1, . . .,Ckk}, respec-

tively. Then, a ‘‘Partition’’ request signed by the

secret key of region Bi is generated and multicasted

to all the nodes in group G. The IDs of region Bi,

Bm+1, and the k regions are sent together with the

request. By Lagrange interpolation, we know

that

SKBi ¼
Xk

j¼1

SKBjlBjðIDBiÞ ðmod qÞ; ð1Þ
A

B1 Bm

after "Partition"
(m+1 regions at Level 2)

Ci1 Cin

Bm+1

C(m+1)1 C(m+1)n

Bi

’’ operation.
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where lBjðIDBiÞ ¼
Qk

r¼1;r 6¼j
IDBi�IDBr

IDBj�IDBr
ðmodqÞ. Since

we know that

SKBj ¼
Xk

h¼1

SKCjhlCjhð0Þ ðmodqÞ; ð2Þ

where lCjhð0Þ ¼
Qk

r¼1;r 6¼j

IDCjr

IDCjr�IDCjh
ðmodqÞ. Com-

bine Eqs. (1) and (2)

SKBi ¼
Xk

j¼1

Xk

h¼1

SKCjhlCjhð0ÞlBjðIDBiÞ ðmodqÞ:

ð3Þ
Similarly, we get

SKBmþ1
¼

Xk

j¼1

Xk

h¼1

SKCjh lCjhð0ÞlBjðIDBmþ1
Þ ðmodqÞ;

ð4Þ
where lBjðIDBmþ1

Þ ¼
Qk

r¼1;r 6¼j
IDBmþ1

�IDBr

IDBj�IDBr
ðmodqÞ.

From Eqs. (3) and (4), we get:

SKBmþ1
� SKBi ¼

Xk

j¼1

Xk

h¼1

SKCjhlCjhð0ÞRj ðmodqÞ;

ð5Þ
where Rj ¼ lBjðIDBmþ1

Þ � lBjðIDBiÞ.
Consequently, to help nodes in region Bm+1

generate the new shares of SKBmþ1
, each node Cjh

in group G first computes SK 0
Cjh

¼ SKCjh lCjhð0ÞRj.
ALevel 1

Level 2

Level L-1

Level L

B1 Bn

C1

D1 DnDm Dm+1

(a)

Le

Le

Le

Le

Lev

Fig. 5. ‘‘Expansion’’ operation: (a) before ‘‘E
Then distributes the partial shares, i.e. the secret

shares of SK 0
Cjh

, to nodes in region Bm+1 using dis-

tributed VSS scheme proposed in [24]. According

to Eq. (5), using the homomorphic property, each

node in region Bm+1 can compute its new share of
SKBmþ1

by adding k2 partial shares from members

in group G to its original share of SKBi .

6.2.5. ‘‘Expansion’’ operation

Similar to ‘‘Partition’’ operations, ‘‘Expansion’’

Operations happen when the RTC of a region

drops under GTC or is lower than the security

level expected. However, there is a special case in
which we must take ‘‘Expansion’’ Operations.

More specifically, when AKM has reached its

capacity upper limit (namely, the RTCs of all the

regions in AKM are equal to GTC), to ensure that

the RTC of any region should not be less than

GTC, we have to undertake a ‘‘Expansion’’ Oper-

ation, which increases the height of the hierarchi-

cal key tree.
For example, as shown in Fig. 5, before the

‘‘Expansion’’ operation, the height of AKM is L.

Now there is a new node that wants to join region

C1, but the RTCs of all the regions in AKM

including region C1 are equal to GTC. Therefore,

the ‘‘Expansion’’ operation is executed. We as-

sume that, original secret sharing of region C1 is

executed by following:
Avel 1

vel 2

vel L-1

vel L

el L+1

B1 Bn

C1

Dm+1 Dn Dn+1

E1 Em

(b)

xpansion’’ and (b) after ‘‘Expansion’’.
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SKDi ¼ a0 þ a1 � IDDi þ � � � þ ak�1 � IDk�1
Di

ðmodqÞ:
ð6Þ

First, chooses a group of m nodes from region C1

which will be degraded to Level L + 1, where

k 6 m 6 n � k + 1. Without loss of generality, let

the group be R = {D1, . . . ,Dk}. Following that,

chooses a new identity denoted as IDDnþ1
for the

master node of all the nodes degraded. According

to the Shamir secret sharing scheme [28], the secret

share for node Dn+1 can be calculated by the k

nodes in group R. However, during the ‘‘Expan-
sion’’ operation, this secret share would be never

calculated out or recovered explicitly, since we

do not assume the existence of a TA at this stage.

For simplicity, the same (n,k) threshold scheme

is employed in the newly created region Dn+1.

Without loss of generality, we assume that a new

identity IDEi is assigned to the node whose old

identity is IDDi , or the identity is chosen by the
node itself. Then each node in group R calculates

the following partial secret share denoted as SK 0
Ei

and distributes it to the node with the new identity

IDEi :

SK 0
Ei
¼ SKDj � lDnþ1

þ
Xk�1

r¼1

bjr � IDr
Ei

ðmodqÞ; ð7Þ

where lDnþ1
¼

Qk
h¼1;h 6¼j

IDDnþ1
�IDDh

IDDj�IDDh
. Finally, each

node recovers its new secret share in the new re-

gion by combining all the secret shares as
ALevel 1

Level 2

Level L-1

Level L

B1 Bn

C1

D1 Dn

(a)

Level  1

Level  2

Level L

Level  L

Level L

Fig. 6. Generic ‘‘Expansion’’ operation: (a) befor
SKEi ¼ b0 þ b1 � IDEi þ � � � þ bk�1 � IDk�1
Ei

ðmodqÞ;
ð8Þ

where b0 ¼ SKDnþ1
; br ¼

Pk
j¼1bjr (r = 1,2, . . . ,k � 1).

Therefore, all the coefficients of the secret sharing

polynomial of the new region are cooperatively

determined by the k nodes. At the end of the oper-

ation, the height of AKM increases to L + 1.

In Fig. 5, there are n real nodes at level L before

‘‘Expansion’’. After performing the ‘‘Expansion’’

operation, m of them move to level L + 1, while

others still remain at level L. From the security as-
pect, it means that those real nodes at level L have

higher privileges than those moving to level L + 1,

since each of them holds a share of SKC1
directly.

For nodes at level L + 1, it requires k nodes of

them to recover a share of SKC1
cooperatively. It

may not be desirable in some circumstances.

In Fig. 6, the ‘‘Expansion’’ operation groups

previous n real nodes under C1 into r regions,
and the size of each region is denoted as Si

(i = 1,2, . . . , r). Therefore, we have n ¼
Pi¼r

i¼1Si.

On one hand, the operation taken in Fig. 6 can

be viewed as a series of operations (i.e. r opera-

tions) described in Fig. 5, which are undertaken

separately for the r regions. On the other hand,

the operation in Fig. 5 can also be viewed as a spe-

cial case of the operation described in Fig. 6, in
which r � 1 of r regions has only one member,

and this member remains its old share instead of

computing a new one.
A

-1

+1

B1 Bn

C1

Dn+1 Dn+r

F1 FSrE1 ES1

(b)

e ‘‘Expansion’’ and (b) after ‘‘Expansion’’.
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For communication efficiency, when nodes

cooperate to undertake region-based operations,

they may take their (relative) physical locations

into consideration as well. In other words, they

may prefer neighbors nearby to those nodes that
are far away, when region-based operations, e.g.

‘‘Partition’’ and ‘‘Expansion’’ operations, are

executed.

6.2.6. ‘‘Contraction’’ operation

‘‘Contraction’’ Operations happen when AKM

reaches its capacity lower limit. To ensure that

the number of nodes in any region in AKM is
not less than the threshold set before, we have to

decrease the level of the structure. Similar to a

‘‘Merge’’ operation, a ‘‘Contraction’’ Operation

can be viewed as a series of ‘‘Join’’ operations as

well.
7. Certification services against active attacks

7.1. Certificate initialization and renewal

There are two ways to issue a new certificate or

renew a certificate. A node may be issued an initial

certificate by an online or offline TA, after the

authority verifies the authenticity through external

means (e.g., in-person ID). However, it is both
costly for the TA to maintain certificates of all

the nodes and is inconvenient for new nodes to re-

quest their certificates from the root TA. An alter-

native approach is to use any coalition of k

networking nodes to issue an initial certificate via

collaborative admission control for this new node.

In AKM, we use the second approach, and extend

it to support certification services with different
levels of assurance. A certificate with the lowest

level of assurance is assigned with the cooperation

of k real nodes within the same region, while a

certificate with higher-level assurance can be

achieved with the coalition of more nodes from

different regions.

In AKM, the certificate of node i, denoted as

CERTi, is a statement certi that is signed by the se-
cret key of its master node. The statement certi
consists of the association between node i and its

public key, the ORS and the threshold of the mas-
ter node, and the expired time. The ORS and the

threshold are included in certi, since receivers

may be interested in and thus calculate the RTC

of the region from which node i comes. For exam-

ple, they are useful in performing region-based
operations.

In [16,18,19], Kong et al. employed the RSA

scheme to provide the certification services. It

works well under the flat structure. However, we

find that it is not suitable for the hierarchical struc-

ture like AKM. In RSA, the certificate of node i is

denoted as CERTi = (certi)
SK(modN), where SK is

the secret key of the master node of node i.
According to the requirements of RSA, SK should

be coprime to /(N), i.e. the Euler function of N.

Namely,

gcdðSK;/ðNÞÞ ¼ 1: ð9Þ

In AKM, all the secret keys of virtual nodes are

generated during the recursive secret sharing pro-
cess. In addition, in a purely ad hoc network, each

node has the right to choose its ID instead of being

predetermined by any entity. That is to say, during

the secret sharing process, the secret shares are

generated with arbitrary IDs according to the

Shamir secret sharing scheme. Therefore, there is

a very large possibility that they are not coprime

to /(N), which has the factor ‘‘4’’.
To handle such problem, we design the scheme

based on the difficulty of DLP. Both ElGamal [4]

and Digital Signature Standard (DSS) [6] require

the computation of the inverse of the secrets, and

such an operation is costly. To be more efficient,

variants of the Schnorr signature scheme [27] and

the signature scheme proposed by Park and

Kurosawa [23] are employed to fulfill the task.
Here we only show two algorithms based on the

Schnorr signature scheme. In the former, nodes i

selects a group of 2k � 1 nodes, and these nodes

cooperate to assign node i a certificate. It requires

only one round to assign a certificate. In the latter,

node i selects a group of k nodes, and these nodes

cooperate to assign node i a certificate. It may need

more than one round to assign a certificate, when
there are malicious nodes launching active attacks.

The first algorithm has been proposed by Stin-

son and Strobl [29], which is provably secure,

i.e., one can break this threshold signature iff one
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can break the Schnorr signature scheme. The sec-

ond algorithm is modified from [29] by us, which

is also provably secure. It is very efficient but not

fault-tolerant. These two algorithms, especially

the second one, are more efficient and secure than
Kong et al.�s scheme. First, both of the two algo-

rithms proposed by Kong et al. cannot handle ac-

tive attacks. It can only verify whether the

combined certificate is valid, but fails to find out

the invalid partial certificates. Consequently, as

long as there is one fake partial certificate among

the k partial certificates chosen to generate the cer-

tificate, all the work done by other honest nodes
are useless. Even worse, adversaries can perform

the attack without being caught. It makes Kong

et al.�s scheme inefficient for MANET. To prevent

such attack, in our scheme nodes can verify each

partial certificate to detect those malicious nodes.

Second, our algorithms are based on DLP, which

is faster than RSA on which Kong et al.�s algo-

rithms are based. Third, the time for generating a
partial certificate in our algorithms is 7–150 times

shorter than in Kong et al.�s scheme, when there

is no communication error. Such advantage is crit-

ical in MANET where by nature the less help a

node requests from its neighbors, the higher is

the chance of obtaining the help. Furthermore,

Kong�s algorithm requires a k-bounded offsetting

to recover the real certificate [16,18,19], while we
can generate the real certificate directly.

7.1.1. Assigning certificates based on 2k � 1 nodes

In this algorithm, a VSS scheme is employed to

find out adversaries who launch active attacks.

Since Pedersen�s VSS scheme [24] requires a dealer,

it is not suitable for ad hoc environments. Instead,

we follow the distributed way proposed in Stin-
son�s scheme [29] to achieve verifiable secure shar-

ing. This algorithm requires cooperation from

2k � 1 nodes, 4 and it ensures that the whole pro-

cess of assigning a certificate can be finished within

one round, in spite of active attacks launched by

malicious nodes, since there are at most k � 1

adversaries.
4 On consideration of the dynamic property of MANETs, a

relative higher number of nodes may need to be involved in this

algorithm.
Let p and q be two large primes such that q di-

vides p � 1, and let Gq is the unique multiplicative

subgroup of Zp with order q. Let m be the state-

ment claiming that a new node i�s public key is

PKi, let h(Æ) be a one-way hash function:
f0; 1g� ! Zq.

First, node i chooses a group of 2k � 1 nodes

from its neighbors. Without loss of generality, let

the group be G = {ID1, . . . , ID2k�1}. Then node i

broadcasts the request m together with the IDs

of the 2k � 1 nodes among the group G. To

achieve VSS, we need to generate a random shared

secret denoted as r within group G. Details is
shown as follows.

Once a node j 2 G receives the request and deci-

des to serve the request, it chooses rj; r0j 2 Zq at

random, and verifiably shares them among G act-

ing as the dealer according to Pedersen�s VSS

scheme. Let the sharing polynomials be fjðuÞ ¼Pk�1

t¼0 ajtu
t; f 0

j ðuÞ ¼
Pk�1

t¼0 a
0
jtu

t, where aj0 = rj, a0j0 ¼
r0j. Let the public commitments be Cjt ¼ gajt �
ha

0
jt ðmodpÞ for t 2 {0, . . . ,k � 1}, where g and h

are two generators of Gq and no one knows loggh.

Let H0 be the set of nodes which are not detected

to be cheating. Then the shared secret r is defined

as r ¼
P

j2H0
rj, and node j sets its share of the se-

cret as ej ¼
P

t2H0
ftðIDjÞðmodqÞ, and the value

e0j ¼
P

t2H0
f 0
t ðIDjÞðmodqÞ.

Next, each node j (2H0) broadcasts Ajk ¼ gajt

for t 2 {0, . . . ,k � 1}, and each node s in H0 can

verify the values broadcasted by other nodes in

H0 by checking if

gfjðIDsÞ ¼
Yk�1

t¼0

ðAjtÞID
t
s ðmodpÞ: ð10Þ

If the check fails for an index j, node s complains

against node j by broadcasting the values fj(IDs),

f 0
j ðIDsÞ that satisfy

gfjðIDsÞ � hf 0j ðIDsÞ ¼
Yk�1

t¼0

ðCjtÞID
t
s ðmodpÞ ð11Þ

but do not satisfy Eq. (10). For node i which re-

ceived at least one valid complaint, other nodes

run the reconstruction phase of Pedersen�s VSS

scheme to compute rj, fj(Æ), Ajt for t = 0, . . . ,k � 1.
Therefore, all the players in H0 set X j ¼ grj .
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After performing these steps, the following

equations hold:

X ¼
Y
j2H0

X j ¼ gr ðmodpÞ;

f ðuÞ ¼ r þ a1uþ � � � þ ak�1uk�1;

where at ¼
P

j2H0
ajt, for t 2 1, . . . ,k � 1, and

f(j) = ej(modq) for j 2 H0.

Ct ¼ gat ðt ¼ 0; . . . ; k � 1Þ:
In [10], the above scheme is proved to be robust

under the assumption that k 6 n/2. In AKM, this

assumption is satisfied, since the threshold of a re-

gion is normally set to be much less than the num-

ber of nodes in this region.

Then for each node j 2 H0, reveals its partial
certificate

cj ¼ ej þ hðmkX Þ � SKj ðmodqÞ

and cj can be verified by

gcj ¼ X �
Yk�1

t¼1

Cjt

t � PKhðmkX Þ
j

for all j 2 H0. Let (SK,PK) denote the key pair of

the region to which the 2k � 1 nodes belong. Let

H1 denote the set of nodes not detected to be

cheating in the above step. After verifying the par-

tial certificates, node i selects an arbitrary subset

H2 � H1 with jH2j = k. Without loss of generality,

we denote H2 = {1, . . . ,k}, and compute

r ¼
X
j2H2

cjl
0
jð0Þ ðmodqÞ;

where l0jð0Þ ¼
Qk

r¼1;r 6¼j
IDr

IDr�IDj
ðmodqÞ. Then node i�s

signature for m (i.e. CERTi) is the pair (X,r). Since
r = e + h(mkX)SK(modq), other nodes can verify

the certificate by

gr ¼ X � PKhðmkX Þ ðmodpÞ:
7.1.2. Assigning certificates based on k nodes

Although the algorithm presented Section 7.1.1

can complete the certification service within one

round, the computation overhead for achieving
VSS is heavy for nodes in MANET. To solve this

problem, in this section we present another algo-

rithm which requires lightweight computation.

This algorithm needs cooperation from only k
nodes, but it may take more than one round to as-

sign a certificate, when malicious nodes are launch-

ing active attacks. Although this algorithm is not

fault-tolerant, we can distinguish honest and mali-

cious nodes, and those honest nodes are selected
directly as members of group G of the next round.

Simulation results show that, when there is no

communication error, more than 96% of certifica-

tion renewals can be finished within two rounds,

even if malicious nodes launch active attacks. It

is much higher than that of Kong et al.�s scheme,

which declines very fast when the threshold

increases.
Let p and q be two large primes such that q di-

vides p � 1, let Gq is the unique multiplicative sub-

group of Zp with order q, and let g be a generator

of Gq. Let m be the statement claiming that a new

node i�s public key is PKi, let h(Æ) be a one-way

hash function: f0; 1g� ! Zq.

Details of the algorithm for generating a thresh-

old Schnorr signature are shown as follows. First,
node i chooses a group of k nodes from its neigh-

bors. Without loss of generality, let the group be

G = {ID1, . . . , IDk}. Then node i broadcasts the re-

quest m together with the IDs of the k nodes in

group G.

Once a node j 2 G receives the request and deci-

des to serve the request, it first chooses a random

integer ej 2 Zq and broadcasts xj ¼ gejðmodpÞ
and PKj ¼ gSKjðmodpÞ within the group G. Then

node j calculates its partial certificate cj that is spe-
cific to group G

cj ¼ ej þ hðmkX Þ � SKj � ljð0Þ ðmodqÞ;

where ljð0Þ ¼
Qk

r¼1;r 6¼j
IDr

IDr�IDj
ðmodqÞ and X ¼Qk

j¼1xjðmodpÞ, and returns it to node i. Node i

can verify the partial certificate as follows:

gcj ¼ xj � PKhðmkX Þljð0Þ
j ðmodpÞ: ð12Þ

If the k partial certificates are valid, node i calcu-

lates r¼
Pk

j¼1cj, and its signature form (i.e.CERTi)

is the pair (X,r). Other nodes and node i can verify

the certificate by

gr ¼ X � PKhðmkX Þ ðmodpÞ; ð13Þ
where the public key of the region to which k

nodes belong is denoted as PK. In practice, node
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i can first verify (X,r) using Eq. (13). If it is valid,

the task is completed. Otherwise, node i then ver-

ifies the partial certificates using Eq. (12).

7.1.3. Assigning certificates with higher level

assurance

In AKM, all the secret shares originate from the

same global secret key. Making use of this prop-

erty, our scheme can provide the ability to assign

certificates with different levels of assurance at rel-

atively small costs. Sections 7.1.1 and 7.1.2 present

how to assign a certificate with the lowest level

assurance. Both of the two algorithms can be ex-
tended to assign certificates with higher-level

assurance, but here we just discuss the latter with

an example of assigning a certificate with 2-level

assurance.

As shown in Fig. 7, the secret key of a virtual

node A (i.e. SKA) is distributed to n virtual nodes

{B1,B2, . . . ,Bn} using a (n,k) threshold scheme,

and again SKBj (j = 1,2, . . . ,n) is distributed to nj
real nodes {Cj1;Cj2; . . . ;Cjnj} with a (nj,kj) thresh-

old scheme. For simplicity, we assume that nj = n

and kj = k, for all j = 1,2, . . .,n.
Node i which wants to get a certificate with 2-

level assurance first needs to choose k regions,

and then choose k real nodes from each of these

k regions.

Without losing of generality, let the group of k2

nodes be G = {C11, . . . ,Cjh, . . . ,Ckk}, which belong

to k regions {B1,B2, . . . ,Bk}. Then node i broad-

casts the request m together with the node IDs

of the k2 real nodes and k regions among the group

G.

Once the request is received, real node Cjh

which decides to serve the request from node i first
BjB1 Bn

A

C1hC11 C1n CjhCj1 Cjn CnhCn1 Cnn

Fig. 7. An example of assigning A 2-level assurance.
chooses a random integer ejh 2 Zq and broadcasts

xjh ¼ gejh and PKjh ¼ gSKjh within the group G.

Then node Cjh calculates its additive share cjh that
is specific to group G

cjh ¼ ejh þ hðmkX ÞSKjhljhð0Þkjð0Þ ðmodqÞ;

where X ¼
Qk

j¼1

Qk
h¼1xjhðmodpÞ, ljhð0Þ ¼

Qk
r¼1;r 6¼h

Cjr

Cjr�Cjh
ðmodqÞ, and kjð0Þ ¼

Qk
r¼1;r 6¼j

Br
Br�Bj

ðmodqÞ,
and returns it to node i. Node i can verify the par-
tial certificate as follows:

gcjh ¼ xjh � ðPKjhÞhðmkX Þljhð0Þkjð0Þ ðmodpÞ: ð14Þ
If all the k2 partial certificates are valid, node i cal-

culates r ¼
Pk

j¼1

Pk
h¼1cjh, and its signature for m

(i.e. CERTi) is (X,r). Other nodes and node i can

verify the certificate by

gr ¼ X � ðPKAÞhðmkX Þ ðmodpÞ: ð15Þ

In this scheme, to obtain a certificate with b level

assurance, node i needs the cooperation of at most

kb honest nodes. Such requirement is reasonable

and this scheme is efficient, since in AKM kb is

much smaller than the size of the whole MANET,

i.e. nb. Again, in practice, node i can first verify

(X,r) using Eq. (15). If it is valid, the task is com-
pleted. Otherwise, node i then verifies the partial

certificates using Eq. (14).
7.2. Certificate Revocation

In AKM, Certificate Revocation List (CRL) is

based on the accusations from other nodes. In a

multi-hop wireless network like MANET, the reli-
ability of an accusation is based on the security of

all the nodes that pass and broadcast the accusa-

tion. As such, the further an accusation comes

from, the higher the probability that this accusa-

tion is compromised or malicious is. As a result,

in MANET, messages from far away are not as

trustworthy as those generated by neighbors

(nodes or regions). In addition, large accusation
range results in rapidly increased communication

and storage overheads. Therefore, the range of

the accusations is limited to the same region. If

node i receives an accusation on node j, it marks

node j as ‘‘suspect’’ when there are less than k

accusations towards it. Otherwise, node j is
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marked as ‘‘compromised’’ and is added into node

i�s CRL. In addition, node i launches a request to

the k nodes which accused node j to sign a certifi-

cate revocation message. For example, in Fig. 2, a

(3,2) threshold system is employed within region
T, and node E and F accuse on node D. Thus, they

can cooperate to generate and send out a message

signed by SKT to revoke node D�s certificate.
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Fig. 8. Flat structure vs. hierarchical structure.
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8. Simulations on security and efficiency

In highly dynamic environment like MANET,
small region size may result in rapid variances of

the structure of the key tree. On the other hand,

if the size is too large, we may have problems in

intra-region routing. Current on-demand routing

protocols, such as AODV [25] and OLSR [1], han-

dle well when the size of MANET is around 100–

250 nodes. Thus, it is suitable to set the region size

within this range. Let pn be the probability of a
node being compromised, pr be the probability of

a region being compromised, and n be the size of

the region. Table 3 shows the settings on the

threshold of a region under different conditions.

From the table, we find that, when pn is not less

than 0.01, to ensure pr lower than 10�4, the thresh-

old of a region should be set to at least 7 and 11 for

a region with 100 and 250 nodes, respectively.

8.1. Hierarchical structure vs. flat structure

To show advantages of the hierarchical struc-

ture over the flat structure in key management

based on threshold cryptography, we compare

the probabilities of GSK being compromised in

AKM and [16,18,19]. In our implementation, a
3-level structure is employed, and the threshold

of any region in AKM is set to be 10. As shown
Table 3

Settings on the threshold of a region

pn n = 100 n = 250

pr < 10�4 pr < 10�5 pr < 10�4 pr < 10�5

0.01 7 8 11 13

0.05 16 17 28 30

0.1 24 26 45 48
in Fig. 8, under the flat structure, the security of

MANET is very weak when the size of the whole

network increases. However, under the hierarchi-

cal structure, the probability of GSK being com-
promised is very small and quite stable in spite

of the great size of MANET.

8.2. Regions with the same RTC

As shown in Fig. 9, the higher the RTC is, the

smaller pr is. Therefore, it is suitable to use RTC

as an approximate index of the security condition
of a region. In addition, the higher the RTC is, the
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Fig. 9. Pr with fixed RTC.
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faster pr decreases. Due to these two properties, a

higher RTC is good for the sake of security. How-

ever, on the other hand, it results in a higher

threshold which requires more computation

power.
In addition, we find that, when both the RTC

and the region size are small, this region is easy

to be compromised. For example, in Fig. 9, given

that the pn is 0.01 and the RTC of a region is

0.05, pr may be higher than 0.01 when the size of

the region is less than 75. Consequently, we need

to be aware of this during the generation of a re-

gion. In other words, when the number of initial
nodes in a region is small, the threshold should

be set to a relative high value.

8.3. Computational costs of region-based operations

Since both ‘‘Merge’’ and ‘‘Contraction’’ opera-

tions can be viewed as a series of ‘‘Join’’ opera-

tions, our simulation focuses on ‘‘Partition’’ and
‘‘Expansion’’ operations. We run the simulation

on a Pentium III 800 laptop.

Table 4 shows the computation cost of ‘‘Parti-

tion’’ and ‘‘Expansion’’ operations under different

ORS and threshold. In the table, GPSS stands for

time for generating partial secret shares for all the

nodes in the newly generated region, while GNSS

stands for time for generating the new secret share.
Simulation results show that the computation cost

of both ‘‘Partition’’ and ‘‘Expansion’’ operations is

quite small under common threshold and region

size settings. For example, when the ORS of a re-
Table 4

Computation cost of ‘‘partition’’ and ‘‘expansion’’ operations

ORS Threshold ‘‘Partition’’ Operation (ms)

GPSS GNSS

100 5 8.87 0.03

100 10 18.59 0.11

100 15 30.96 0.28

100 20 46.24 0.60

100 25 62.00 0.80

250 10 47.63 0.11

250 20 124.20 0.68

250 30 205.27 1.29

250 40 302.27 2.24

250 50 422.73 3.77
gion is 100 and its threshold is 15, it only takes

31 ms to complete the ‘‘Partition’’ operation. As

to the ‘‘Expansion’’ operation, the whole cost is

less than 8 ms.

8.4. Computational costs of certification services

We measure and compare the performance of

Kong�s algorithm and our second algorithm on

two Windows 2000 machines. One is a Pentium

IV 2.2G desktop, and the other is a Pentium III

800 laptop. Due to the limited space, we only show

the implementation results on the Pentium III 800
laptop. Both of algorithms are implemented in

Java. We run the experiments under different set-

tings, e.g. different key lengths, thresholds, and

region sizes. For each setting, we run the two algo-

rithms for 20 times, respectively, and then calcu-

late the average values.

Here, the time for generating or renewing a cer-

tificate is calculated as the sum of all the processes
taken by nodes, including the requesting node and

those neighbors that provide certificate services, as

described in the algorithms. We argue that, in

MANET, due to the limitation on computation

power, computational costs on nodes are more

important for providing key management success-

fully. Furthermore, the main objective of this simu-

lation is to show that compared to Kong�s
algorithm our second algorithm has much looser

requirements on the computational power of nodes.

Therefore, we do not consider the communication

overhead, when we compare the two algorithms.
‘‘Expansion’’ Operation (ms)

Total GPSS GNSS Total

8.90 1.59 0.01 1.60

18.70 4.52 0.02 4.54

31.24 7.91 0.02 7.93

46.84 11.69 0.02 11.71

62.80 16.42 0.03 16.45

47.74 11.00 0.03 11.03

124.88 27.67 0.03 27.70

206.56 54.71 0.07 54.78

304.51 90.16 0.07 90.23

426.50 135.78 0.07 135.85
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As shown in Fig. 10, the total time for generat-

ing or renewing a certificate in our second algo-

rithm varies from 20 to 250 ms in the

experiments, depending on the setting on the key

length, threshold, and region size. In particular,
when the key length is 1024 bits, it takes our sec-

ond algorithm around 40–70 ms to generate or

renew a certificate. We also find that, in our second

algorithm, the process that a neighbor generates a

partial certificate for the new node is very fast. As

shown in Fig. 11, such process takes less than

32 ms under all the settings tested in the experi-

ments. In particular, when the key length is 1024
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Fig. 10. Total time for generating or renewing a certificate
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Fig. 11. Time for generating a partial certificate in ou
bits, it takes less than 9 ms to generate a partial

certificate.

To compare with previous work [16,18,19], in

Figs. 12 and 13, we show the ratio of the total time

for generating or renewing a certificate in Kong�s
algorithm (denoted as TC-KONG) to that of our sec-

ond algorithm (denoted as TC-OUR) and the ratio

of the time for generating a partial certificate in

Kong�s algorithm (denoted as TPC-KONG) to that

of our second algorithm (denoted as TPC-OUR),

respectively. As shown in Fig. 12, our second algo-

rithm is more efficient, when we consider the total

time for assigning a new certificate. For instance,
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in our second algorithm: (a) n = 100 and (b) n = 250.
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Fig. 14. Success rate of certification renewals—n = 100: (a) error rate = 0%; (b) error rate = 1%; (c) error rate = 5% and (d) error

rate = 10%.
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when the key length is 1024 bits, our second algo-

rithm is around six to eight times faster than

Kong�s algorithm. As to the process of generating

a partial certificate, the efficiency is greatly im-

proved in our second algorithm. For example,
when the key length is 1024 bits, our second algo-

rithm is around 20–80 times faster. Consequently,

using our second algorithm, a node can easily find

enough neighbor nodes to provide the certification

service, since very little effort is involved.

From empirical results, we notice that the per-

formance of our algorithm is tightly related to the

key length and the threshold. The larger the key
length is, the more time we need to complete the

certification service. However, compared to Kong

et al.�s scheme, our second scheme is less sensitive
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Fig. 15. Success rate of certification renewals—n = 250: (a) error ra

rate = 10%.
to this parameter, and thus is more efficient. Simi-

larly, the larger the threshold is, the more time we

need to complete the certification service.

8.5. Certification services under active attacks

To compare the efficiency of certification ser-

vices under active attacks, we use the success rate

of certification renewals within certain rounds

and the average rounds of retries before success-

fully assigning or renewing a certificate as the eval-

uation metrics. Here, we denote the success rate of

certification renewals within r rounds and the wire-
less channel error rate as SRr and e, respectively.

We run the simulation in a 600 m · 600 m net-

work with 100 or 250 nodes, and the speed of
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Fig. 16. Average retries of certification renewals: (a) n = 100 and (b) n = 250.
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nodes ranges from 1 m/s to 20 m/s. The random

way-point model is applied to emulate node mobil-
ity pattern. In the simulation, we consider the sce-

narios of different wireless channel error rates,

from no error (0%) to high error rate (10%). For

each scenario, if the certification renewal fails

due to either active attacks or communication er-

rors, the node which requests the certification ser-

vice would replay the request up to a maximum

number of retries. Typically, we set the maximum
number of retries to 100 in the simulation.

As shown in Figs. 14 and 15, in all the simula-

tion models, the success rate of Kong�s algorithm
declines very quickly when the threshold increases.

For example, even when there is no communica-

tion error, for a region with size 100 and pn is

0.01, if the threshold of this region is set to be 5,

SR2 is 81.7%. However, if the threshold increases
to 10, it drops to 38.2%. In contrast, in our second

algorithm, SR2 decreases only 0.2%, i.e. from

100% to 99.8%, while the threshold increases from

5 to 10.

As shown in Figs. 14 and 15, the success rate of

our second algorithm is always higher than that of

Kong�s algorithm. However, we also notice that in

our second algorithm, the higher the wireless chan-
nel error rate is, the faster the success rate of certi-

fication renewals declines. More specifically, our

second algorithm works well under low wireless

channel error rates, e.g. e = 1%. When e increases

(e.g. under heavy communications), SRr is more
sensitive to the variations on the threshold. For in-

stance, as shown in Fig. 14, when e = 1% and
n = 100, SR2 decrease by 5.4%, while the threshold

increases 5 from 10. However, when e = 10% and

n = 100, for the same variation of the threshold,

SR2 decreases by 33.4% instead. In such cases, to

improve the success rate, we need to either choose

a small threshold or increase the number of retries.

The former is more effective. In addition, in AKM,

to ensure the security, the RTC of one region
should not be less than GTC. Therefore, we need

to limit the size of a region, when the wireless

channel error rate is high.

Fig. 16 shows the average retries of certification

renewals in Kong�s algorithm and our second algo-

rithm under different wireless channel error rates.

In all the cases, compared to our second algo-

rithm, Kong�s algorithm takes more rounds to
complete the certification renewal. Similar to the

experimental results on the success rate of certifica-

tion renewals, in our second algorithm, the higher

the wireless channel error rate is, the faster the

average retries of certification renewals raises when

the threshold of the region increases.
9. Conclusion

To overcome those challenges (e.g. security, effi-

ciency, flexibility, and adaptivity) in key manage-

ment in large MANETs, in this paper, we
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provided approaches aiming at both the architec-

ture level and the algorithm level. At the architec-

ture level, to ensure flexibility and adaptivity, a

new key management scheme based on the hierar-

chical structure and secret sharing was proposed
to distribute cryptographic keys and provide certi-

fication services; at the algorithm level, to resist ac-

tive attacks, we proposed two algorithms which are

based on threshold cryptography and VSS, and can

be used independently from the key management

scheme proposed. Simulation results show that,

compared to previous work [16,18,19], our scheme

is not only much faster, but it also can resist active
attacks which are difficult to defend using existing

schemes. Another major contribution of our work

is that certificates with different levels of assurance

can be issued with the coalition of a relatively small

number of nodes. Furthermore, our scheme can

isolate the compromised regions and provide stron-

ger protection to the Global Secret Key (GSK)

compared to flat-structured schemes.
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